EECS 2077 Test #1, Winter 2015

#1/25 pts	Allowed materials: 1 p	age of a 1-sided equations sheet, writing utensil, calculator.
#2/25 pts	Remember – we use cg	s units! Centimeter/gram/second.
#3/25 pts	kT = 0.026 eV (300 K)	ε,=8.854x10 ⁻¹⁴ F/cm
#4/25 pts	$q = 1.6 \times 10^{-19} \text{ C}$	$n=1.5 \times 10^{10} / cm^{3}$
Optional Feedbac	<u>k</u>	

Name:

Rate the length of this test:	short 🗌	long 🗌	OK
Rate the difficulty of this test:	easy	hard 🗌	OK 🗌

1) [25 pts.] An <u>ideal</u> p+n junction at 300K, made out of an unknown material (is not Si) has the following parameters (you might not need them all).

<u>p-side:</u>	<u>n-side:</u>	General parameters
Na=10 ¹⁷ /cm ³	Nd=10 ¹⁵ /cm ³	ε=6.8
Dn=50 cm ² sec	Dp=100 cm ² sec	$n_i=1.5 \times 10^{10} / cm^3$
Ln=20x10 ³ cm	$Lp=50x10^{-2}$ cm	

a) [10 pts] What are the DRIFT and DIFFUSION current densities (A/cm²) across the junction at an applied reverse bias of -5V?

Calculations:

Answer for DRIFT: _____

Answer for DIFFUSION: _____

b) [10 pts] What is the DRIFT AND DIFFUSION current density (A/cm²) across the junction at a <u>forward bias of</u> 0.6? V?

Calculations:

Answer for DRIFT: _____

Answer for DIFFUSION: _____

c) [5 pts] Under reverse bias, what type of carrier dominates? Circle one: electrons / holes / neither

2.) A metal-semiconductor diode!

- (a) [9 pts] draw the resulting band diagram after the materials are contacted. Make sure you label the contact potential on your band diagram.
- (b) [8 pts] redraw the diagram for reverse bias, and draw with an arrow where the current is coming from.
- (c) [8 pts] challenge problem :) Draw the E-field plot for this device for both the cases of no-voltage and reverse-bias voltage (make sure you label which is which!).

EECS 2077 Test #1, Winter 2015

3.) Some multiple choice:

Name:

[5 pts] A diode at 300K with no voltage on it has this type of current:

DRIFT	DIFFUSION	BOTH	NEITHER

[5 pts] If we decrease doping, then (choose one):

[] carrier lifetime decreases and diffusion length increases

[] carrier lifetime increases and diffusion length decreases

[] carrier lifetime decreases and diffusion length decreases

[] carrier lifetime increases and diffusion length increases

[5 pts] The depletion region:

[] contains charges such as carriers and ionized dopants

[] contains charges such as ionized dopants

[] contains charges such as carriers

[] contains no charges at all

[5 pts] The units for this mystery equation are (is made up, is not a real one for this course!):

$$? = N_a \frac{kT}{q} \ln \frac{N_a N_d}{n_i^2} (L_n)^2$$

[] cm³/V [] V/cm [] V [] C/cm³

[5 pts] If I increase doping on both sides of a diode.

[] all types of currents decrease

[] all types of currents increase

[] drift increases

[] diffusion increases

4) 25 pts - Some mish-mash wrap-up questions....

a) [5 pts] Drift current requires which of the following (check all that apply):

____ carriers with electrical charge

_____ temperature to drive the current

_____ electric field to drive the current

____ concentration gradient to drive the current

b) [5 pts] heavily doped diodes (p+ and n+) will typically be dominated by this type of breakdown.

TUNNELING (ZENER) AVALANCE BOTH NEITHER

c) [15 pts] A Si bar is 0.4 cm long and 100 μ m² in cross-sectional area is doped with 10¹⁷ boron, resulting a mobility for holes of 500 (cm/s)/(V/cm). What is the DRIFT current (current I_p, not current density J_p) with 4V applied? *Problem is from the homework!*

Name:_____

EECS 2077 Test #1, Winter 2015 Extra Space